Mike_Zhang 阅读(10) 评论(0)

操作系统 : CentOS7.3.1611_x64

python版本:2.7.5

问题描述

1、Python开发的程序在使用过程中很慢,想确定下是哪段代码比较慢;

2、Python开发的程序在使用过程中占用内存很大,想确定下是哪段代码引起的;

解决方案

使用profile分析分析cpu使用情况

profile介绍: https://docs.python.org/2/library/profile.html

可以使用profile和cProfile对python程序进行分析,这里主要记录下cProfile的使用,profile参考cProfile即可。

假设有如下代码需要进行分析(cProfileTest1.py):

#! /usr/bin/env python
#-*- coding:utf-8 -*-

def foo():
    sum = 0
    for i in range(100):
        sum += i
    return sum

if __name__ == "__main__" :
    foo()

可以通过以下两种使用方式进行分析:

1、不修改程序

分析程序:

python -m cProfile -o test1.out cProfileTest1.py

查看运行结果:

python -c "import pstats; p=pstats.Stats('test1.out'); p.print_stats()"

查看排序后的运行结果:

python -c "import pstats; p=pstats.Stats('test1.out'); p.sort_stats('time').print_stats()"

2、修改程序

加入如下代码:

import cProfile
cProfile.run("foo()")

完整代码如下: https://github.com/mike-zhang/pyExamples/blob/master/profileOpt/cpuProfile1/cProfileTest2.py

运行效果如下:

Ordered by: standard name

ncalls  tottime  percall  cumtime  percall filename:lineno(function)
     1    0.000    0.000    0.000    0.000 <string>:1(<module>)
     1    0.000    0.000    0.000    0.000 cProfileTest2.py:4(foo)
     1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}
     1    0.000    0.000    0.000    0.000 {range}

结果说明:

ncalls : 函数的被调用次数
tottime :函数总计运行时间,除去函数中调用的函数运行时间
percall :函数运行一次的平均时间,等于tottime/ncalls
cumtime :函数总计运行时间,含调用的函数运行时间
percall :函数运行一次的平均时间,等于cumtime/ncalls
filename:lineno(function) 函数所在的文件名,函数的行号,函数名

使用memory_profiler分析内存使用情况

https://pypi.python.org/pypi/memory_profiler

需要安装memory_profiler :

pip install psutil
pip install memory_profiler

假设有如下代码需要进行分析:

def my_func():
    a = [1] * (10*6)
    b = [2] * (10*7)
    del b
    return a

使用memory_profiler是需要修改代码的,这里记录下以下两种使用方式:

1、不导入模块使用

@profile
def my_func():
    a = [1] * (10*6)
    b = [2] * (10*7)
    del b
    return a

完整代码如下: https://github.com/mike-zhang/pyExamples/blob/master/profileOpt/memoryProfile1/test1.py

profile分析:

python -m memory_profiler test1.py

2、导入模块使用

from memory_profiler import profile

@profile
def my_func():
    a = [1] * (10*6)
    b = [2] * (10*7)
    del b
    return a

完整代码如下:

直接运行程序即可进行分析。

运行效果如下:

(py27env) [mike@local test]$ python test1.py
Filename: test1.py

Line #    Mem usage    Increment   Line Contents
================================================
     6     29.5 MiB      0.0 MiB   @profile
     7                             def my_func():
     8     29.5 MiB      0.0 MiB       a = [1] * (10*6)
     9     29.5 MiB      0.0 MiB       b = [2] * (10*7)
    10     29.5 MiB      0.0 MiB       del b
    11     29.5 MiB      0.0 MiB       return a

profile分析完整代码地址:https://github.com/mike-zhang/pyExamples/tree/master/profileOpt

好,就这些了,希望对你有帮助。

本文github地址:

https://github.com/mike-zhang/mikeBlogEssays/blob/master/2017/20170907_python程序之profile分析.rst

欢迎补充